Crop Science – crop nutrition pH, Liming & Micronutrients

ESSENTIAL ELEMENTS

Element	Symbol	Form absorbed by Plants	Bag Declaration	
Major Nutrients				
Nitrogen	Ν	$NH_4^+ \& NO_3^-$	% total N ^(b)	
Phosphorous	Р	HPo_4^{2-}	% P ₂ O ₅	
Potassium	K	K^+	% K ₂ O	
Calcium	Ca	Ca ²⁺	% CaO	
Magnesium	Mg	Mg^{2+}	% MgO	
Sulphur	S	SO_4^{2-}	% SO ₃	
Sodium	Na	Na ⁺	% Na ₂ O	
Trace Elements				
Iron	Fe	Fe^{2+}	% Fe	
Mangenese	Mn	Mn^{2+}	% Mn	
Boron	В	B(OH) ₃	% B	
Copper	Cu	Cu ²⁺	% Cu	
Zinc	Zn	Zn^{2+}	% Zn	
Molybdenum	Mo	MoO_4^{2-}	% Mo	

Soil pH

Why Soils Become Acidic

- Crop uptake of lime
- Leaching
- Acid rain
- Ammonium fertilisers
- Organic manures

Importance of Soil pH

- Suitability to different crops
- Behaviour of fertilisers
- Trace element availability
- Microbial activity

Optimum pH

	Mineral Soils	Peat Soils	
Arable	6.5	5.8	
Grass/grass clover	6.0	5.3	

 ALL crops can tolerate lower pH on ORGANIC & PEAT soils

pH below which yield maybe affected				
	pH			
S Beet	6.5			
Barley	5.8			
Wheat	5.5			
OSR	5.8			
Potatoes	4.8			
Rye grass	4.7			

Correction of Soil Acidity

- 1. Detection of soil acidity (pH)
 - Correct soil sampling
- 2. Assessment of amount of lime required
 - Exchangeable acidity soil texture

Lime requirement (t/ha ground lime stone) - Arable							
Soil pH							
	6.0	5.5	5.0				
Sands & loamy sands	4	7	10				
Sandy loams & silts	5	8	12				
Clay loams & clays	6	10	14				
Organic soils	6	10	14				
Peats	0	8	16				

Correction of Soil Acidity

- 1. Detection of soil acidity (pH)
 - Correct soil sampling
- 2. Assessment of amount of lime required
 - Exchangeable acidity soil texture
- 3. Choice of suitable liming material
 - Neutralising value

Neutralising value

• Used to compare effectiveness of different liming materials

 the parts by weight of pure calcium oxide (CaO) which have the same neutralising value as 100 parts by weight of the liming material being considered

• Neutralising value of liming materials Burnt lime (CaO) = 80 - 95Ground limestone (CaCO₃) = 50Slaked lime (Ca(OH)₂) = 70Ground Magnesian limestone = 50 - 55Sugar beet factory lime = 20 - 25

Correction of Soil Acidity

- 1. Detection of soil acidity (pH)
 - Correct soil sampling
- 2. Assessment of amount of lime required
 - Exchangeable acidity soil texture
- 3. Choice of suitable liming material
 - Neutralising value
 - Particle size
 - Magnesium index
 - Cost

Trace Element Deficiencies Manganese

- Most common trace element deficiency in the UK
- Soil conditions that predispose:
 - high pH
 - high organic matter
 - poor drainage
 - poor seedbed consolidation
- Diagnosis
 - leaf analysis to confirm visual symptoms
- Treatment
 - foliar spray of manganese sulphate

Manganese deficiency

Manganese deficiency - barley

Manganese deficiency - wheat

Manganese deficiency - oats

- Deficiency in specific situations

 Organic soils with high pH
 Sandy calcareous soils
- Diagnosis

– soil analysis used to confirm visual symptoms

• Treatment

- Foliar spray of copper oxychloride